Proving z1.(z2.z3) = (z1.z2).z3 using the associative law/property?

Proving z1.(z2.z3) = (z1.z2).z3 using the associative law/property?




Let



z1 = (x1, y1)



z2 = (x2, y2)



z3 = (x3, y3)



how do you prove that z1(z2z3) = (z1z2)z3 using the associative law?



Is it possible to just compute for the right side?



I saw this answer



(z1 z2) z3 = (x1 x2 - y1 y2 + i (x1y2+x2y1))(x3+iy3) =



=x3x1x2-x3y1y2-x1y2y3-x2y1y3 + i (x1x2y3-y1y2y3+x1y2x3+x2y1y3)



z1 (z2z3) = (x1 + 1y1) (x2x3-y2y3 + i (x2y3+x3y2)) =



= x1x2x3 - x1y2y3 - x2y3y1 - y1x3y2 + i (x1x2y3+x1x3y2+y1x2x3-y1y2y3)



but it really doesnt make sense to me and id like to solve this without using " i "





No Answers Posted Yet.