Inductance In Parallel Assignment Help | Inductance In Parallel Homework Help

Inductance in Parallel

Two inductors L1 and L2 are connected in parallel. Let M be their mutual inductance. Let I be the main supply current and I1 and I2 the branch currents. Consider a case when self-induced e.m.f. and mutually induced e.m.f. are in same direction.

The e.m.f. in coil I (L1) is
        ε1 = L1 dI1/dt + M dI2/dt                                … (1)

The e.m.f. in coil 2 (L2) is
        ε2 = L2 dI2/dt + M dI1/dt                                … (2)

In parallel arrangement, ε1 = ε2 = ε
    . :    L1 dI1/dt + MdI2/dt = L2 dI2/dt + M dI1/dt
        (L1 – M)dI1/dt = (L2 – M)dI2/dt
    . :     dI1/dt = (L2 – M/ L1 – M) dI2/dt

Substituting this is Eq. (2),
        ε = L2 dI2/dt + M (L2 – M/ L1 – M) dI2dt
= [L2 + M (L2 – M /L1 – M)] dI2/dt
. : ε (L1 – M) = (L1L2 – M2) dI2/dt                                    … (3)

Similarly, eliminating dI2/dt from Eq. (2),
    ε (L2 – M) = (L1L2 – M2)dI1/dt                                … (4)

Adding Eqs. (3) and (4),
    ε (L1 + L2 – 2M) = (L1L2 – M2) (dI1/dt + dI2/dt)
But I = I1 + I2
    dI/dt = dI1/dt + dI2/dt
. :    ε = (L1L2 – M2/ L1 + L2 – 2M) dI/dt                            … (5)

If L is equivalent inductance, then ε = LdI/dt                                … (6)

. :        L = L1L2 – M2 /L1 + L2 – 2M                            … (7)

If the inductors are connected in such a way that the flux due to self induction opposes the flux due to mutual induction, then
        L = L1L2 – M2 /L1 + L2 + 2M                            … (8)

Inductances in Parallel


For more help in Inductances in Parallel please click the button below to submit your homework assignment.